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Abstract. DEMIST is a multi-representational simulation environment that
suppats understanding d the representations and concepts of popuation
dynamics. We report on a study with 18 subjeds with little prior knowledge
that explored if DEMIST could suppat their learning and asked what dedsions
leaners would make ébou how to use the many representations that DEMIST
provides. Anaysis reveded that using DEMIST for one hou significantly
improved leaners understanding d popuation dyramics though their
knowledge of the relation between representations remained wegk. It showed
that learners used many of DEMIST's feaures. For example, they investigated
the majority of the representational space used dyreslinking to explore the
relation between representations and hed preferences for representations with
different computational properties. It also reveded that dedsions made by
designersimpaded uponwhat isintended to be afreediscovery environment.

1 Introduction

Reseach with multi-representational tutoring systems and learning environments has
reveded that leaning with multiple external representations is a demanding process
but one that if succesgully mastered can leal to a degp understanding d the domain
[eg. 1,2]. DEMIST is a multi-representational simulation designed to explore when
learning with MERs is effedive. It implements the DeFT framework for learning with
MERS and by evauating hav people lean with DEMIST, we dso evauate the
uncerlying framework. This srves a dual function. By analyzing leaners’ behaviour
we can understand more @ou the demands of complex information pocessng and
by undrstanding these demands adaptive multi-representational leaning
environments can be aeaed. To acomplish this, we intend to perform design
experiments based onmanipulating the parameters of the DeFT framework. However,
before this can be athieved we have sought to discover if DEMIST is effedive and
how leaners would respond to an environment which provides © much
representational flexibility. To begin we therefore summarise the DeFT framework
and hov DEMIST embodes it before turning to the detail s of the study.

The DeFT Framework [3] provides an acournt of the different pedagogcd
functions that MERs can play, the desigh parameters that are unique to learning with
MERs and the cognitive tasks that must be undertaken by aleaner.
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There ae three key functions of MERS: to complement, constrain and construct.
MERs complement ead ather by suppating dfferent complementary processes or
containing complementary information. When two representations constrain eadh
other, they do so because one suppats interpretation o the other. Finally, MERS can
suppat the @nstruction o deeper understanding when leaners abstrad over
representations to identify the shared invariant fegures of a domain. Each of these
functions has a number of subclasses (see[4]). The cgnitive tasks that alearner must
perform to lean with MERs include understanding the properties of the
representation and the relation ketween the representations and the domain.
Additionally, leaners may have to seled or construct representations. The cogntive
demand uriqgue to MERs is to undrstand hav to trandate between two
representations and there is much evidence that this is complicated. DeFT describes
five key design dmensions that uniquely apply to multi-representational systems:

1. Redundancy: How information is distributed. This influences the complexity of a
representation and the redundancy of information acossthe system;

. Form: The computational properties of a representational system;

. Trangdlation: The degreeof suppat provided for mapping ketween representations

. Sequence: The order in which representations are presented;

. Number: The number of (co-present) representations suppated bythe system.
DEMIST [3] allows g/stematic manipulations of these design parameters. It aims

to suppat leaners in the development of their knowledge of the cncepts and

representations important in understanding popuiation dyramics. It provides a number

of mathematica models, for example, the Lotka-Volterra model of predation which

leaners can explore. To investigate these models, users are presented with a

potentially very large set of representations. Hence, DEMIST also aims to suppat

leaners’ understanding o how domain general representations such as X-Time

graphs are used in this domain, to introduce them to the spedfic representations of

popuation dyramics (such as phaseplots and life tables) and to encourage their

uncderstanding o the relationship between these representations.

The study we report in this paper represents the first attempt to evauate if
DEMIST is effedive. However, an equaly important goal was to dscover how
leaners would use asimulation-based leaning environment which includes £ many
representations. We subscribe to the view that leaning is best considered an adive
process where leaners take resporsibility for their own adhievements, but were
worried abou whether DEMIST provides sufficient suppat to guide leaners new to
the domain. Therefore akey design gal was to keep tradk of users behaviour with
DEMIST. Furthermore, few simulation environments provide leaners with gute so
much choice dou what representations to interad with and hav many to work with
simultaneously. Therefore we have littl e information abou leaners' representational
preferences. Hence, this experiment explores dedsions leaners make when provided
with many complex representations.
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2 System Description

DEMIST (seefigure 1) is built aroundthe aithoring d instructional scenarios. The
basis for itsdesignis aformal description d an instructional simulation that describes
the task of authoring simulations with SIMQUEST [5,6]. Each scenario consists of a



sequence of Learning Units that instantiate a particular mathematical model. The
parameters of the mathematical model are combined as experimental sets that can be
instantiated by various sets of initial conditions. This allows the learner to explore the
same model under different experimental conditions.
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Fig. 1. DEMIST in learning mode.

Each of these Learning Units includes a set of representations such as table, XY -
Graph, Histogram, Animations which display one or many of the variables and
parameters extracted from the mathematical model. Representations can be
automatically displayed or only shown when the learner requests them and the order
in which they appear can be specified by an author or left under learner control. One
of the features of DEMIST, unique to our knowledge among the simulation
environments, is that the translation between representations can be varied. DEMIST
currently allows three levels of translation: independent (actions on an ER are not
reflected onto other ERS), map relation (selecting a value in one ER shows all the
corresponding relationships in other ERs) and dyna-linked (modifying the information
in one ER is reflected onto all the other relevant ERs). There are a small number of
additional activities available to the learners. In particular, they can make hypotheses
about the values of the model in the future or perform actions, which alows the
learner to act on avalue at the current stage of the ssimulation and change it. They can
choose which representations they use to perform these activities and depending on
the degree of trandation could check the consequences of these actions on other
representations (e.g. predict that the population density will have doubled in sizein 10
years by adding a hypothesis to the relevant row of atable and see a point added to
the graph corresponding to that prediction).



3 Method

The experiment used three of DEMIST’s models of population dynamics, starting
from the simplest: Single-Species Unlimited Growth (SSUG), Single-Species Limited
Growth (SSLG) and Two-Species Predation (TSP). Each of these models consisted of
three learning units, which focused on particular phenomena that is characteristic of
that model (e.g. doubling time for exponentia growth, carrying capacity for limited
growth [7]). The learning units specified the representations to be included and any
learning activities to be performed. To provide learners with a large relatively
unconstrained space to explore, the following authoring decisions were made:
- Information: representations contain up to three dimensions of information. Pairs
of representations could therefore have full, partial or no redundancy;
- Form: large representational system (between 8 to 10 ERs for each unit), which
varied in their relevance and ease of interpretation;
— Sequence: learner choice of sequence of representations;
— Number: a maximum of five co-present representations. A small number of
representations were selected to be displayed at the beginning of each unit;
- Trandlation: full dyna-linking allowing learners to reflect actions onto other ERs.
For the purposes of this study we were less interested in examining the
informational properties of a representation. Hence, we categorised the
representations according to a taxonomy of representation type which focused on the
format and operators of the representations. For example, al tables were classified as
one type of representation, tabular, whether they contained values of population
density, growth rate or environmental resistance. Similarly al representations that
could have been considered as animations were so grouped. The analysis of the type
of representations provided in the experiment together with the number of
representation of each type available by model can be seenin table 1.

Table 1. Categorization of ERSin DEMIST

Description SUG S9.G TSP
X v Time Graph Line graph of data acrosstime 6 5 4
X v Time Graph (log) L ogarithmic scaled line graph 2
XY Graph Line graph that plots two dimensions > 5 4

of datawhere oneis not time.
Chart Two-dimensional bar chart 4 3 3
Pie Chart Proportions of two or more values 3
Concrete Animation  Dynamic ER with apictorial element 1 2 4
Table Tabular representation 4 3 4
Dynamic Equation Dynamic ER that contains explicit 3 4 >

mathematical expressions
Terms Dynamic ER with explanatory text

2 1

and often a current value

Value A very ssmple representation that 3 3 3

provides only adatalabel and value




3.1 Participants

18 participants were involved in the experiment. All were students or researchers at
Nottingham, and their prior experience in mathematics and biology was recorded
(students with degrees in biology or mathematics were excluded from the
experiment). One of them crashed the software during the experiment, making the
data unreliable for analysis. The results are based on the remaining 17 participants.

3.2 Preand Post-Test

The pretest and the post-test consisted of multiple-choice questions, 11 for the
former, and 22 for the latter. The pre-test was developed to assess whether subjects
had any relevant prior knowledge and was deliberately designed to include items that
were most likely to be familiar. The post-test included more difficult items and
repeated 10 of these pre-test questions. One key feature of the questionnaire design
was the development of three types of question. The first focused on domain concepts
(e.g. what will happen to the prey population if some predators are removed?), the
second on interpreting specific representations (e.g. which of these four graphs of
population density against time is characteristic of SSUL?) and the third on multi-
representational understanding (e.g. finding the odd-one-out among four different
representations of supposedly the same dataset). These questions were designed to
assess if multi-representational smulations such as DEMIST can support learning
about representations and the relation between representations as well as the more
traditional conceptual issues.

3.3 Procedure

Participants were first given the un-timed pre-test and were then introduced to
DEMIST and the main features of the interface explained. The experimenter remained
present to clarify any questions that learners may have about the interface but did not
provide direct guidance. Participants were warned they only had one hour to complete
the three tasks and the experimenter occasionaly reminded them about the time.
However, generally participants had complete control over the amount of time and the
nature of their interactions with DEMIST. After one hour, participants were stopped
and immediately given the post-test. They completed the test in their own time and
were then debriefed and paid for their participation.

4 Resaults

The learners had some prior knowledge of the domain. If they had been guessing,
they would have been expected to get a total of 25% of the questions right as each
guestion had one right answer and three distractors. As can be seen from table 2, the
average pre-test score was 42.3% which is significantly above chance (t= 4.3, df = 16,
p < 0.001).



Table 2. Pre-Test and Post-Test results.

Overall Concept Sngle ER MERs
MeanS.Dev. MeanS.Dev. MeanS.Dev. MeanS.Dev.
Pre-Test (11 items) 42.3%16% 41.2%23% 52.9%21% 11.8%22%
Post-Test (22 items) 55.6%15% 61.3%27% 59.9%10% 33.8%26%

Closer analysis revedled whether or not questions of different types (i.e
conceptua, single ER, MERS) were answered differently. Conceptual and Single ER
questions were answered above chance, however those relating to MERs were
answered significantly below chance (t = 2.5, df= 16, p=.024). This pattern of results
confirms our intuitions that these types of question were harder than the others.

The post-test consisted of 10 items from the pre-test and 12 more items. Again the
performance of participants was significantly above chance at 55.6%, (t= 8.5, df = 16,
p<.0001). Table 2 shows that overall there was a significant increase in the percentage
of questions that subjects got right from pre-test to post-test (t = 3.1, df =16, p<0.008).
Asthe post-test included more difficult items than the pre-test, we compared subjects
performance on those questions that were present on both the pre and post-test. Scores
significantly improved on these questions from an average of 45.9% at pre-test to
62.3% at post-test (t = 4.9, df = 16, p <.0001). Finaly, we looked at performance on
post-test items by type of question. Performance on al questions was now
significantly above chance accept for those questions which dealt specifically with
MERs (t=1.4 df = 16, p=.188) which was now at chance.

There was only limited time available for this intervention and in future we would
like to have longer sessions. So given these factors we are content to observe
significant improvement in learning outcomes.

4.1 How Do Learnersuse DEMIST?

The second goal of the study was to explore learners' representation use to discover
whether they had strong preferences about the representations.

Number of Simultaneous Representations

Learners had the choice to work simultaneously with between one and five
representations plus the controller. The majority of learners spent most of their time
working with three representations (40.4% of total time) or four representations
(31.7%). Working with one representation at a time was very unpopular and working
with two only sightly more common. Thereis arelatively high standard deviation for
the use of 5 co-present representations (mean 19.1%, St.Dev. 13.12%). No one chose
to use the maximum number of five representations for more than half the session and
some participants never used more than four representations.

Exploration of the Representational Space

We examined the total number of representations that the participants activated (using
a time threshold of 10 seconds to avoid including Ers opened in error). Participants
tended to explore as much as possible of the representational space, activating a total



of 73 representations on average out of the 80 available. However, this does imply
that they used the representations equally. To examine which representations learners
preferred we calculated the amount of time each type of representation was used. As
not all representations were available in al learning units, we first calculated the
maximum possible availability (see table 1). Secondly, we grouped all representations
of the same type together even if they contained different information. This allowed
us to express the use of each type of representation as afunction of its availability. So,
for example in table 3, the low value for the pie chart does not mean that it was
available rarely, it shows that even when available, it was not selected.

Table 3. External Representations Usage.

Mean S.Dev. '\Fle%pc;f Trandlation Hypothesis
Xv Time Graph 3% 21% 9/15 532 151
Terms 70%  26% 3/3 2 0
Value 60% 12% 3/9 1 0
Chart 33% 19% 2/10 13 0
XY Graph 29% 24% 2/11 257 0
Concrete Animation 28% 21% 217 4 0
Table 28% 20% 2/11 178 4
Dynamic Equation 21% 19% 19 0 0
Pie Chart 9%  10% 0/3 0 0
Xv Time Graph(log) 8% 12% 0/2 16 5

Key — The use of a representation expresed as a percentage of maximum
potential usage, standad deviation, the number of representations of a gven
type opened auomatically by the system as well as the total number of that
type, andthe number of trandation and lypothesis requests over the ext.

The first analysis we performed on this data was to examine how influenced
learners had been by the initial selection of representations for a unit. During piloting
it had become evident that some learners were unhappy unless they were provided
with an initial set of representations, hence for each unit we selected two or three
representations to open automatically. However, learners were free to close those
representations at any time. We found a striking correlation between our provision of
representations and the ones that learners spent the most time working with (r = 0.85,
n =10, p < 0.02). For this reason, a large degree in the variance of percentage of use
is not based on a learner's choice of representations, it is based on the system'’s
choice. The ERs that learners selected for different amounts of time than that
predicted simply by automatic selection include the XY graph which was used more
than expected, and the table and concrete animation, which were used less.

Acting on Representations

Representations are used for both display and action, where actions are a request to
trandate information, predict avalue at some future point or to modify current values.
The trace logs provided information about which ER was associated with the



initiating adion for trandating and for stating hypdheses. The total number of these
requests for the 17 participants can be seen in table 3. There is enormous variancein
these values. The X v Time Graph was used for 98% of al hypaheses. For translation
requests, again the X v Time Graph was the most common acourting for 58% of all
requests, but the XY Graph (25%) and the Table (12%) were dso used appredably.
These latter figures are particularly interesting as they do nd refled the percentage of
time that leaners chose to dsplay the representations (see table 3). Trandlation
requests from the XY graph are plausibly abou trying to understand a new and
difficult to interpret representation, whereas from the table perhaps its famili arity was
being wsed byleanersto help interpret other representations.

5 Discussion

This gudy provides useful information to begin work on design experiments on the
DeFT parameters. They have confirmed that DEMIST can tead leaners with littl e
prior knowledge éou the representations and concepts involved in popuation
dynamics. Thisis encouraging asin namal use we would exped to allow leaners to
use DEMIST for substantially more than the one hou avail able for this gudy.

Analysis of the test material has own that understanding the relation between
representations may be the most difficult asped of the domain. Leaners performed
worse on these items at pre-test and orly gat 34% of the MERs answers right at post-
test. This confirms ealier studies which have shown that relational understanding is
difficult for leaners (eg. [8,9]). How best to suppat trandation ketween
representations, is one of the apeds of DeFT that has been implemented in DEMIST.
We can vary the level of automatic suppat between ERs in ways that we refer to as
contingent translation. Leaners new to the domain shoud be provided with fully
dynalinked MERSs. This séfolding will be reduced as their knowledge improves o
that they take increasing resporsibility for mapping information acdoss ERs. The
relatively poa performanceonthe MERs itemsin the study provides further evidence
for the importance of empiricd reseach in this area ad hghlights the need to
develop test material that is sensitive to multi-representational understanding.

This gudy was also concerned with addressng haw leaners would behave if they
were given the representational flexibility that DEMIST provides. We were interested
in exploring what their representational preferences were and whether they would
spontaneously choose to use feaures such as trandation. A number of interesting
detail swere reveded about leaners behaviour, some of which we had not expeded.

Firstly, we were disconcerted to olserve how much of leaners' representational
seledion was based on an initial set of representations presented by the computer.
Esentidly, the vast majority of leaners chose to work with these representations
only exploring dternatives towards the end d aleaning unt. This may well cause us
to redesign the learning urits. The dedsion to “pop up pre-seleded representations
had been made dter piloting. However, we viewed the system presentation o
representations as gentle guidance dou useful places to start and emphasised this
during the introduction to the system. This does naot sean to have been leaners
interpretation. Of course, perhaps we daose the “best” representations for ead urit
and the leaners smply agreed with this choice This is posgble & we based ou
seledion d representations on the way that they were used in textbooks (e.g. Gotelli



1998. A future experiment could compare different ways of seleding initial ERs
varying between nore/randam /“worst’/*best” to provide information about how
much gudance asuppasedly discovery environment like DEMIST ought to provide.

Other results that may have implicaions beyond DEMIST’s domain include the
number of co-present ERs that learners chose to use. There was a strong has for three
or four ERs. Leaners rarely chose to focus on only ore or two at a time. Some
leaners did seem happy to goto five, the maximum we dlowed in this gudy bu
others limited their seledion to three Many simulation environments provide afixed
number of representations. We would argue that idedly this dedsion shoud be under
leaner control, but where nat, limiting the number of co-present ERs to threeor four
seams to fit with most learners representational preferences.

We dso examined leaners adions to see which ERs were used to request
trandations. Learners made quite anumber of translation requests (an average of 59
per participant). The majority of these were from the X-Time graph bu significant
numbers were from the XY graph. This was aurprisingly high gven its low general
percentage presence We interpret this behaviour of one of attempting to use
DEMIST'’s trandation feaures to uncerstand this complex representation by relating
it to other more familiar representations. We had expeded to see more leaners
seleding familiar representations and requesting transdation from this known padnt.
This was arguably what occurred with the table. However, representations such as
“value” which we had included for this function were not used in this way. It
provokes an interesting instructional question d whether leaners doud start from
the familiar and interpret a new representation from its dandpant or start with the
unfamiliar and complex and then see how it relates to the familiar. Finaly, leaners
only stated hypdheses with X-Time graph. This is disappanting as one of the
benefits of dyna-linking is that leaners could construct hypaheses on dfferent ERs
and see how this was mapped to ather ERs. For example, they could have alded
values to the table (which is an easy and predse operation) and then this value would
be refleded orto ather representations such as the XY graph. We need to find a way
to emphasise this grategy as it is a more adive way of understanding relations
between representations than simply seleding common dmensions of information.

We had expeded to olserve asystematic relationship between representation usage
and leaning. There was no evidence for this. One reason for this may be the ladk of
variability between leaners ER use — e.g. sticking to system selection, examining bu
not redly using al of the representation space choasing threeor four representations,
etc. However, this result also highlights a flaw in relying solely on the traditional
experimental method For example, if leaners chose to spend a large anourt of time
with an XY graph, we can't tell from the traces if the explanation is that they didn't
uncerstand the representation and were trying to interpret it or whether they were in
fad fully conversant with it and recognised that it was a useful way to understand the
domain. If we want to understand the processof leaning with MERs we ned to take
a more fine-grained approach to data mlledion. A key next stage in the projed will
be to condict a micro-genetic study (e.g. [10]) with ore or two leaners where we will
take detail ed protocols abou their goals, strategies and dedsions.

This dudy hes reveded DEMIST to be asuitable environment to ask questions
abou how leaners shoud best be suppated when they learn with MERSs. It is based
on a rich damain which is best understood by reference to multiple linked
representations. We have shown that students can begin to understand the domainin a
short amourt of time but that the more complex issues will require more time and



strategic support. Hence, we will be following a two-pronged research agenda. Using
detailed protocol analysis we hope to build a more complete picture of the process of
learning in this domain which could ultimately form the basis of a computational
model (e.g. [11]). Second, we can perform design experiments which systematically
vary the DeFT parameters (e.g. amount of trandation, number of co-present ERs). A
combination of these two approaches should help uncover design principles for how
best to support the complex information processing that MERS require.
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