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Abstract

The terms dynamic representation and animation are often used as if they are synonymous, but in this
paper we argue that there are multiple ways to represent phenomena that change over time. Time-
persistent representations show arange of values over time. Time-implicit representations also show
arange of values but not the specific times when the values occur. Time-singular representations
show only a single point of time. In this paper, we examine the use of dynamic representations in
instructional simulations. We argue that the three types of dynamic representations have distinct
advantages compared to static representations. We also suggest there are specific cognitive tasks
associated with their use. Furthermore, dynamic representations of different form are often displayed
simultaneously. We conclude that to understand learning with multiple dynamic representations, it is
crucial to consider the way in which time is displayed.

Multiple Representations of Time

Dynamic representations display processes that change with respect to time. For example,
they may show blood pumping around the body, the flux of high and low pressure areas in a weather
map, the developing results of a computer program running (algorithm animation) or the movements
in physical systems such as series of pulleys. Animation is normally considered the prototypical
dynamic representation and is defined as a“ series of frames so each frame appears as an alternation
of the previous one” (e.g. Bé&rancourt & Tversky, 2000). Typically, each frame exists only
transiently to be replaced by subsequent frames, i.e. the dimension used to represent timein the
representation is time. Stenning (1998) refers to this aspect of animation (and other representations
such as video and speech) as evanescence, in contrast to still, persistent media such as static pictures
or text.

Theresearch on the effectiveness of animation for increasing learners’ motivation normally
reports positive effects (e.g. Rieber, 1991). However, research addressing whether animation aids
learners understanding of dynamic phenomena has produced positive results (Kaiser, Profit, Whelan
& Hecht, 1992; Rieber, 1991), negative results (Rieber, 1990; Schnotz, Béckheler & Grzondzell,
1999) or neutral results (Price 2002; Pane, Corrbet & John, 1996). Thisis not surprising asasingle
type of representation is rardy maximally effective for all purposes, but rather particular
representations facilitate performance on certain tasks (Gilmore & Green, 1984).

Nevertheless, there are a number of reasons why research on animation effectiveness has
produced such mixed results. A wide range of factors such as outcome measures, individual
differences in participants and research environment have been varied, making consistent results less
likely (Price, 2002). Nor has only a single type of animation been investigated. Lowe (2003)
identifies three types of change events used in animations: transformations, in which the properties of
objects such as size, shape and colour alter; translation, in which objects move from one location to
another; and transitions, in which objects disappear or appear. Learners may focus on more obvious
perceptual events rather than on those that are of most conceptual interest —for example, Lowe
(1999) found that novices extracting information from a dynamic weather map focused on less
important tranglations rather than the more important but perceptually subtle transformations.
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There are a number of reasons why animations may place increased demands on learners.
Stenning (1998) analyses animations (as simple as a guide to constructing ‘flat-pack’ furniture) from
a perspective that emphasises the semantics and processing requirements of making inferences from
representations (see Stenning & Oberlander, 1995 for details of the approach). Firstly, he argues that
astheinformation in animations is presented transiently, relevant previous states must be held in
memory if they areto be integrated with new knowledge. Secondly, animations cannot be ambiguous
with respect to time and, as a consequence, they force activities to be shown in a particular sequence.
Consequently, when what is represented is not fully determined with respect to time, animations may
employ tricks (such as showing activities happening in parallé like nails being hammered into a table
top simultaneously) or place activities in a particular order wherein fact order isirrdevant (and in
text could easily be expressed as “ now hammer in all four nails’). Thirdly, unlike a static diagram,
animations that are not user-controllable do not permit learners to re-access previous states or vary
the speed at which information is presented.

However, not all work identifies transiently presented information as a necessary aspect of
animation. Brown (1988) proposes that persistenceis, in fact, a dimension of animation (i.e.
representations can range from those that only define the current state of the information to those that
contain a history of each change in information). Hence, some of the difficulties associated with
processing animations should not apply to dynamic representations that are persistent. In particular,
these representations should not |ead to the memory loads associated with integrating transient forms
of representations. Additionally, learners can inspect previous states at will in persistent
representations. However, persistence may cause representations to be very complex if all prior states
have to be explicitly represented.

In this paper we shall examine how persistence influences both the informational and
computational properties of dynamic representation. Furthermore, dynamic representations are
almost never presented in isolation but are usually combined with textual description of the
situations, pictures or other forms of representation. Hence, we focus on the impact on learners of
combining representations with different dynamic form. We will illustrate this argument with atype
of learning environment that almost invariably employs multiple dynamic representations —
instructional simulation. We begin by describing the properties of simulations and provide an
example to use as a case study throughout therest of the paper.

Instructional Simulations

Instructional simulations such as SimQuest (de Jong & van Joolingen, 1998) or Stella
(Steed, 1992) are domain independent environments that contain an executable model of a system
whose results are presented to learners. They allow learners to construct their own knowledge by
interacting with an environment, conducting experiments and by observing the effects of these
experiments. As a consequence, it is hoped that learners acquire deep, flexible, and transferable
knowledge. Simulations overcome one of the limitations of natural systems by allowing
representation of processes and quantities that are usually invisiblein nature (e.g. energy, vectors,
equilibrium states, etc.). They almost always provide multiple external representations of the
simulated moddl. For example, a simulation of a harmonic oscillator (e.g. White, 1984) can present
the motion of the system by a basic animation of a body’s movement and also by graphically
representing this motion in time-series graphs or as phase-plots (for definitions see bel ow).
Moreover, both graphs and animation can be presented simultaneously, allowing observation of the
interrelation between the two representations.

In this paper, we will draw all examples from a simulation of population dynamics (see Van
Labeke & Ainsworth, 2002). Population dynamics is the branch of biology that attempts to discover
the rules that govern how populations of living organisms grow, decline or oscillate. It describes such
features as a speci es birth/death rate, the maximum number of individuals that can be supported in a
population, the rate that predators capture prey and how availability of prey influences the number of
predators that can be supported. The relationship between these features is given by fairly complex
mathematical expressions. For example, a simplified statement of the relationship between number of
predators and prey is given by Lotka-Volterra equations such as dN/dt = r N(1-N/K) —alpha N P,
(wherer = prey fertility, N = population density of prey, P = population density of predators, K =
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carrying capacity of the environment and alpha = the number of prey killed by a predator per unit
time). However, as may be immediately apparent to the reader, this is a dense expression which
learners can find difficult to interpret.

To help learners understand such complex relationships, textbooks typically provide a
number of forms of representations such as time-series graphs (e.g. the population density of number
of prey and predators on the Y axis with time of the X axis), Ln(X) graphs (e.g. the Y- Axis
represents the natural log of population density with time on the X axis), phase-plots (e.g. the number
of prey on the X-Axis and humber of predators on the Y-Axis), tables of values, histograms, pie-
charts, text that provides definitions of terms and pictures of the animals described. The advent of
instructional simulations expands this representational repertoire in two ways: firstly, by changing
static representations into their dynamic equivalents (e.g. atime-series graph can incrementally adjust
asthe simulation runs or as learners interact with it) and secondly, by allowing new forms of
representation such as video or animation.

Dynamic Representationsin I nstructional Simulations

There are many ways of classifying representations. Commonly representations are discussed
in terms of features such as their modality (text or graphics), abstraction (e.g. iconic or symbalic),
sensory channel (auditory or visual), dimensionality (i.e. 2 d or 3d) or dynamism (static or dynamic).
In this paper, we argue that to classify representations merely as either static or dynamic isto
categorise at the wrong leve of granularity. Instead, we propose that in addition to static
representations, there are three types of dynamic representation. We contend that each has distinct
informational and computational properties.

Time-persistent representations

Thefirst type of dynamic representation is one we call atime-persistent (T-P) representation.
It expresses the reation between at least one variable and time by displaying both (i) the current
value and (ii) any other ones that have been computed. Typical examples in this domain include a
graph of the population density of predators and prey against time (time-series graph) or atable
where each row contains the number of prey killed (e.g. Figure 1). In many ways, this type of
representation is very similar to its static equivalent. Often the only difference between this
representation when presented in atextbook or in a simulation is that the dynamic representation
displays data incrementally rather than presenting the whole data set from the start. Taking a time-
series graph and making it dynamic does not add any new information, although it may make certain
features of that information more salient. Thisis not the case for the other forms of dynamic
representation discussed later. For example, if the learner stops the simulation running, it is still
possible to determine how fast populations are growing or declining by examining the scale of the
representation and previous values of the variables. Therefore, for any dimension of information that
a T-Prepresentation displays, it provides the learner with the most amount of information. The finer
the granularity of the representation of time the greater this information (e.g. contrast the categorical
table with values presented only once every 5 steps of the simulation (Figure 1a) versus a continuous
time-series graph (Figure 1b)).

Time-implicit representations

The second type of representation is time-implicit (T-1), which show arange of values but not the
time when these values occurred (once static). The most common example in population dynamicsis
a phase-plot (or phase space graph) where the X-axis encodes the number of prey and the Y -axis the
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number of predators, and time is the parameterising variable along the plaot line (see Figure 2, 2ais
generated from the same information as Figure 1) .

Like T-P representations, T-1 representations show the relation between variables over a
period of time. Unlike the T-P representations, however, the time-scale of thisinformationis only
perceivable when presented dynamically. For example, Figure 2a, shows that when the number of
prey was 41, the numbers of predators was 7, but although we know this happens in the past, thereis
no way to determine what point in time this occurred. Therate of change of the values being graphed
is only visible when the simulation is running and the representation dynamically adjusting.
Consequently, when a simulation is stopped learners must invoke internal representations to compare
current values to a particular previous state to answer questions about the timescale of growth. Thus,
this representation has different information when presented dynamically than when presented
statically. For example, in static Figure 2a, thereis now no way of determining how long it took for
prey numbers to increase from 20 to 40. Similarly, Figure 2b shows alimit cycleand soiit is
impossible to know how many times this cycle has occurred when presented statically, whereas this
information would be obvious in a time-series graph. As aresult, these representations contain less
information that T-P, i.e. it is possible to derive a T-1 representation from a T-P representation but not
vice versa.

Figure 1 Time Persistent Representations: Predator Prey Population Density (a) Table, (b) Time-
Series Graph
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" Phase-plots are occasionally seen where time s explicitly represented as a third dimension, (e.g. in Modus,

Wedekind, 1993). In our categorization, these would be time-persistent representations.
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Figure 2 Time Implicit representations: (a, b) Predator Prey Population Density Phase-plots , (c)

Population Change v Population Density Phase-plot

€Y (b) (©
30 -
o 14 20 -
s 12 ®
S 10 g 151 2,20 -
g s B g
o a 10 A 5
> ° 5 5
o] 2 514 a
g 2 T T T T | e 0
5 = | | | | ——
0 10 20 30 40 50 z o 20 40 60 80 0 50 100 150 200 250
Number of Prey Number of Prey Number of Prey

Time-singular representations

Thethird type of representation, time-singular (T-S), displays one or more variables at a
single instant of time. We consider this to be the classical case of animation as this type of
representation is evanescent. Examples of T-S representations that are useful for understanding
population dynamics include a pie-chart of the relative proportions of prey and predator density at a
particular instant of time, a picture of caterpillar which adds a new segment to its body for every 100
new bugs born or a histogram of the values of population density, etc. Of course, in many cases this
is not an intrinsic property of the representation. A histogram could be designed such that a new bar
represents a new point intime. In that case, it would have been atime-persistent representation.

Figure 3 Time Singular representations: Population density (a) Dynamic Text, (b) Pie Chart, (c)

Concrete Animation.
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As T-S representations display only one state of the system at atime, they contain less
information per dimension compared to T-P and T-I representations. As aresult, they are often used
when the information to be conveyed is highly complex and involves many interacting €l ements
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(such as weather systems or blood pumping through the body). But as a consequence, when a
simulation is stopped the external representation contains only limited information, placing higher
demands on internal processing. For example, to compare current values to previous ones, learners
must hold previous states in memory to integrate them with new information and such activities are
known to place heavy loads on working memory. T-S representations that don’t allow for |earner
control (e.g. scrolling forward and backward) are therefore likely to prove very demanding. Learners
must also internally represent the rate of change of the values to determine the velocity of change.

Static representations

Finally, dynamic simulations often include static representations. Examples of these include
apicture, awritten text defining terms or the L otka-V olterra equations (Figure 4). These
representations allow learners to scan over them at their own initiative, whether the simulationiis
running or still. In this sense, they are similar to T-P representations. They are only intended to show
a single state of the world, like T-S representations, but unlike T-S representations they never change.
When included in dynamic simulations, they place different demands upon learners than when
presented in static media. For example, for system designers, it is easy to know when a representation
is not intended to change with time. However, learners may have to inspect static representation at
some length to rule out the possibility that it is a single snapshot of a potentially varying T-S
representation.

Figure4 Static representations: (a) Definition of Terms, (b) Static Graphic (c) Equation

(a) Hew Terms th) Phaseplot Quadrants
. . . P_
Carrying b Max. no of individuals 1 M- P+
Capacity that can be supported \ M -
Environmental  Envy The impact of the =1
Resistance Res environment on growth P-
defined as NAK | N* Pe
M-

(c) Equation for Logistic Growth
di/dT = Increase Rate x Pop Density ¥ (1 — Eny Res)

/AT = £ M (1 = NAK)

Analysing L ear ning with M ultiple Dynamic Representations

We have previously argued that most instructional simulations (and indeed almost all
learning environments) involve multiple representations. Multiple representations can offer unique
benefits when peaple are learning complex new ideas (Cox & Brna, 1995; Mayer & Sims, 1994) and
are often a characteristic of expertise and expert communication (e.g. Tabachneck, Koedinger, &
Nathan, 1994; Kozma & Russdl, 1997) but unfortunately many studies have found that these benefits
are not always easily achieved (Chandler & Sweller, 1992; de Jong et al, 1998; Scanlon, 1998). To
identify the reasons for these mixed results, we developed the DeFT (Design, Functions, T asks)
framework for learning with multiple representations (e.g. Ainsworth & Van Labeke, 2001). It
proposes that to understand how multiple representations influence learning, three fundamental
aspects of learning should be considered: the design parameters that are unique to learning with more
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than one representation; the different pedagogical functions that multiple representations can play;
and the cognitive tasks that must be undertaken by a learner when interacting with multiple
representations.

In this paper, we use the functional taxonomy of multiple representations to argue that
dynamic representations can play many different roles in learning. Ainsworth (1999) proposed that
the functions of multiple representations fall into three broad classes. Firstly, multiple representations
can support learning by allowing for complementary computational processes or information.
Secondly, multiple representations can be used so that one representation constrains interpretations of
another. Thirdly, multiple representations can support the construction of deeper understanding when
learners abstract over representations to identify what are shared invariant features of a domain and
what are properties of individual representations.

Complementary Functions of Dynamic Representations

When multiple representati ons complement each other they do so because they differ either
in theinfor mation each expresses or in the processes each supports. By combining representations
that differ in these ways, it is hoped that |earners will benefit from the advantages of each of the
individual representations.

Multiple representations provide complementary information when a single representation
would be insufficient to carry all the information about the domain. Multiple representations provide
varying computational processes when they provide learners with the opportunities to draw
alternative inferences about the domain (e.g. Larkin & Simon, 1987, Cox & Brna, 1995; Stenning &
Oberlander, 1995). Thisis one of the most common reasons to use multiple representations and can
be advantageous as different representations support different tasks (e.g. Bibby & Payne, 1993),
alternative strategies (e.g. Tabachneck, Koedinger, & Nathan, 1994) and individual differences (e.g.
Winn, 1987).

By definition, time-persistent, time-implicit and time-singular representations express
different information. This can be demonstrated using population density of predators and prey (P &
N) asanillustration. The T-S representation (Figure 3a) show the current value of N and P, the T-I
representations show the relation between N & P since the simulation starting running but without
information about when N and P were at these values (Figure 2a,b) and the T-P representations show
all values of P and N that are available since the simulation began running (Figure 1). Thus, system
designers can exploit these different informational properties of dynamic representations. They can
provide T-P and T-I representations to encourage learners to consider the range of values and their
relationship to each other time. T-S representations can provide a simple display of current value and
are particularly useful if learners are allowed to manipulate information in the simulation.

The different types of dynamic representations also have different computational properties.
Time-persistent representations do not suffer from the problems of transience associated with
animation and so for many tasks working with this type of representation will be easier for learners.
Furthermore, learners have considerable control over this form of dynamic representation, asit is
easy for them to inspect previous states when they chose. To integrate information about past and
present events, a learner working with a T-P representation can simply compare values by reading the
external representation, so off-loading computation (e.g. Zhang, 1997). In contrast, in evanescent T-S
representations this can only be done by invoking either the memory of previous states or by
performing some inferential step. As aresult, we would expect T-P representations will help learners
to perform tasks that involve both current and previous values by reducing the memory requirements
of holding previous states in memory to integrate with current ones. Time-persistent representations
areideal for showing relationship between current and past values of avariable. They allow learners
to compare two discrete points easily (e.g. in atable) or to inspect the overall pattern (time-series
graph). They also can facilitate prediction of future values particularly when thereis a simple and
obvious perceptual cue (e.g. astraight line of a Ln(N) v Time graph for exponential growth or the“s”
shape of logistic growth).

Time-implicit representations are excellent for determining the relationship between two
dimensions of information at a particular point in time. Previous research has shown that people find
the specific value of one variable at a given value of another variablein less time when presented
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with a phase-plot rather than that a time-series graph even when they are more familiar with time-
series graphs (e.g. Peebles & Cheng, 2001). They can allow learners to quickly determine the type of
relationship between predators and prey and help learners predict future values but not when these
values will occur. For example, the phase-plot in Figure 2 facilitates estimation of where the stability
point is (roughly when N = 20 and P = 8) but not when it will occur. Figure 2b shows that the
populations will continue to oscillate without ever reaching a steady state as the graph shows a limit
cycle. Figure 2c shows that the maximum rate of change for a population growing logistically occurs
when population density is at the midpoint of carrying capacity.

T-S representations provide a quick overview of the current value of the simulation. They
facilitate comparison between two or more dimensions of information when time is not a factor (e.g.
computing increase rate by subtracting death rate from birth rate). T-S representations are concise
and take up little screen space. For example, thereislittle point including a table of values of birth
rate, death rate, etc when for all 300 steps of the simulation the values stay the same. It isalso an
ideal form of representation when the information to be displayed includes static values (such asthe
carrying capacity of a population) and dynamic values (such as population density).

This may be one of the most common reasons to include multiple types of dynamic
representations. To fully understand such complex phenomena many different types of inference are
required - some quantitative with respect to time and some qualitative. The flexibility afforded to the
learner by providing multiple dynamic representations mean they (or the system designer) can chose
which representation best support the current educational objective. Of course for each representation
added to the system, learners must understand how to interpret its format and operators. T-S
representations generally have simple format and operators. T-P representations are more complex.
However, most learners will be familiar with their static equivalents and we have argued that T-P
representations are much closer to their static equivalents than other forms of dynamic representation.
However, athough T-I representations share the same format as T-P representations such as time-
series graphs, even simple changes in form affects learners’ understanding of line-graphs (e.g. Shah
& Carpenter, 1995). So although learners should be able to apply previously learnt operators such as
determining maxima and gradients, they may have difficulty determining what these features mean in
the T-I representations. This can lead to misconceptions such as assuming that greater distance on the
X-axis means greater time. Consequently, learners may need additional help in understanding this
type of representation (see Constraining Functions).

Constraining Functions of Dynamic Representations

A second use of multiple representations is to help learners devel op a better understanding of
adomain by using one representation to constrain their interpretation of a second representation. For
this use of dynamic representations and, in contrast to complementary functions of dynamic
representations, it is crucial that learners understand the relation between the representations.

Thefirst way that constraints tend to be achieved is by employing a familiar representation to
support the interpretation of aless familiar one. For example, familiar concrete representations such
as simple animations are often employed in simulations to support interpretation of complex and
unfamiliar representations such as graphs. Simpler T-S representations (e.g. the dynamic valuesin
Figure 3a) may help learners interpret more complex T-P and T-I representations.

The second way that constraints can be achieved is by taking advantages of inherent
properties of representations. For example, graphical representations are generally more specific than
textual representations (e.g. Stenning & Oberlander, 1995). So, when textual and graphical
representations are presented together, interpretation of the textual (ambiguous) representation may
be constrained by the graphical (specific) representation. Consequently, arepresentation can aidin
interpreting another is when its inherent properties make something explicit that is only implicit in
the other representation. A classic exampleis the way that the timescaleis explicit in T-P
representations but only implicit in other representations. For example, most learners are
considerably less familiar with the way that timeis given by the curve in phase-plots rather than on
the X-axis asin time-series graphs. Hence, presenting both representations simultaneously can
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provide learners with the tools to understand the phase-plat, if they can see how it relates to the time-
series graph.

Constructing Functions of Dynamic Representations

Multiple representations can support the construction of deeper understanding when learners
integrate information from multiple representations to achieve insight it would be difficult to achieve
with only a single representation. ‘ Deeper understanding’ is considered as abstraction, extension or
relational understanding. Abstraction is the process by which learners create mental entities that serve
asthe basis for new procedures and concepts at a higher level of organization. For example, Dienes
(1973) argues that perceptual variability (the same concepts represented in varying ways) provides
learners with the opportunities for building such abstractions. Extension is the process by which a
learner extends knowledge from a known to an unknown to representation, but without
fundamentally reorganizing the nature of that knowledge. Relational understanding is considered to
be the process by which two known representations are associated, without reorganization of
knowledge. The differences between these functions of multiple representations are quite subtle and
all may be present at some stage in the life cycle of encouraging deeper understanding with a multi-
representational environment.

The many different forms of dynamic representation support learners coming to understand
population biology because of the complementary and constraining functions that they serve.
However, it may be the casethat if learners can come to understand the relation between the
representations, they come to understand the domain more thoroughly. For example, the combination
of concrete representations of biology entities as well as abstract representations of mathematical
expressions may encourage learners to see population biology as one instance of a dynamical system.
Thereis considerable perceptual variability in how the concepts are represented. The possibility for
representational extension also exists. Aslearners become more familiar with phase-plots of
population dynamic by relating them to more familiar representations, they may subsequently be
better placed to understand phase graphs in different domains (such as plotting the motion of a
pendulum as phase-plot of velocity and position). They may also understand complex multi-
dimensional phase space graphs more easily (e.g. in the classic Lorenz's modd of chaos in weather
systems) and be able to extend the operators they have learnt to use with phase-plots of population
dynamics (e.g. finding attractors, repellers and saddl e points).

However, for multiple dynamic representations to support deeper understanding learners
must relate the representations to each other. Thisislikdy to cause learners particular problems as
previous research on learning with multiple representations has indicated that tranglation can be the
most difficult aspect of learning with multiple representations (e.g. Ainsworth, Bibby & Wood, 2002;
de Jong et al, 1998) and furthermore, we know that learner can have difficulties in recognising the
relationship between an animation and its static equivalent (e.g. Kaiser, et al 1992). Consequently,
learners may need particular support in this aspect of learning with dynamic representations.

Conclusions

In this paper, we have argued that it is worthwhile considering the way that timeis used in
dynamic representations. Although by far the most commonly researched form of dynamic
representation is the animation, simulation environments use a variety of representations that have
substantially different forms to that of animation. We propose that dynamic representations can take
three forms, time-persistent which explicitly shows a range of values using a spatial dimension to
indicate time, time-implicit which also show arange of values but not when those values occur and
time-singular which only show one value of avariable at atime. We proposed that T-S
representations differ the most from their static equivalents, T-I differ somewhat and T-P
representations do not differ significantly when presented dynamically.

In the majority of simulation environments learners will often be presented with these
different forms of representations simultaneously. We have maintained that the different
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informational and computational properties of the different dynamic forms of representations means
that by combining representations, learners will be able to benefit from the complementary,
constraining (and potentially constructing) functions of these different types of representations.
However, it will increase the cognitive tasks that learners must complete in order to successfully
learn about the concepts and representations under study. For example, Lowe' s research on dynamic
(T-S) weather maps (e.g. Lowe, 1999) suggests that learners focus on perceptually compelling rather
than thematically relevant information. If these features could be extracted from the modd and
presented in the form of T-P representation, it would be interest to discover whether this would help
learners focus on important concepts by presenting them in ways that decrease cognitive load or
whether it would hinder learners because of the problems associated with relating representations of
different forms.

Little research has directly compared learning with these different forms of dynamic
representations. We found some evidence that learners are sensitive to these factors when analysing
learning with aninstructional simulation (Van-Labeke & Ainsworth, 2002). For example, students
interacted exclusively with T-P or T-I representations even when choosing to display significant
numbers of T-S representations. No other way of classifying representations (e.g. modality,
abstraction, complexity) predicted this relationship. However, we have only just begun to examine of
the impact of these different forms of representations in simulations. More fine-grained studies are
needed to explore if learners are making strategic decisions about what sorts of representations best
support their devel oping understanding of population dynamics. If we areto effectively support
learners as they come to understand the relationship between different forms of dynamic
representation, more research is needed to examine the processes by which this occurs

It is apparent that multi-representational dynamic simulations afford learners new ways of
visualising complex domains. Animation is the most extensively studied form of dynamic
representation, but we argue that in many cases, using other forms of dynamic representations either
by themselves or in tandem with animations may lead to more effective learning. Research to address
how to maximise these advantages of different dynamic representations without overwhelming
learners with their associated costs should be productive given the increasing use of all forms of
dynamic representations in learning environments.
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